ar X iv : m at h / 06 10 57 9 v 1 [ m at h . R T ] 1 9 O ct 2 00 6 Universal Central Extensions of the Matrix Leibniz
نویسنده
چکیده
The universal central extensions and their extension kernels of the matrix Lie superalgebra sl(m, n,A), the Steinberg Lie superalgebra st(m, n,A) in category SLeib of Leibniz superalgebras are determined under a weak assumption (compared with [MP]) using the first Hochschild homology and the first cyclic homology group.
منابع مشابه
ar X iv : m at h / 06 10 50 1 v 2 [ m at h . G T ] 1 8 O ct 2 00 6 INTRINSIC LINKING IS ARBITRARILY COMPLEX
We prove that given any n, λ ∈ N, there is a graph G which has the property that every embedding of G in R contains an ncomponent link all of whose components are pairwise linked with linking number greater than λ.
متن کاملar X iv : m at h / 06 10 30 1 v 1 [ m at h . A G ] 9 O ct 2 00 6 ALGEBRAIC NAHM TRANSFORM FOR PARABOLIC HIGGS BUNDLES ON P
— In this paper, we give a completely algebraic description of Nahm transform for parabolic Higgs bundles on P. 2 KÜRŞAT AKER & SZILÁRD SZABÓ
متن کاملar X iv : m at h / 06 11 64 6 v 1 [ m at h . R A ] 2 1 N ov 2 00 6 NATURALLY GRADED 2 - FILIFORM LEIBNIZ ALGEBRAS
The Leibniz algebras appear as a generalization of the Lie algebras [8]. The classification of naturally graded p-filiform Lie algebras is known [3], [4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0 (trivial) and p = 1 [1]. In this work we get the classification of naturally graded no...
متن کاملar X iv : m at h / 06 10 28 4 v 1 [ m at h . SG ] 9 O ct 2 00 6 A UNIQUE DECOMPOSITION THEOREM FOR TIGHT CONTACT 3 - MANIFOLDS
It has been shown by V. Colin that every tight contact 3-manifold can be written as a connected sum of prime manifolds. Here we prove that the summands in this decomposition are unique up to order and contactomor-phism.
متن کاملar X iv : m at h / 06 10 36 9 v 1 [ m at h . G T ] 1 1 O ct 2 00 6 VIRTUAL MANIFOLDS AND LOCALIZATION
In this paper, we explore the virtual technique that is very useful in studying moduli problem from differential geometric point of view. We introduce a class of new objects ”virtual manifolds/orbifolds”, on which we develop the integration theory. In particular, the virtual localization formula is obtained.
متن کامل